JOURNAL OF COMPUTATIONAL PHYSICS141,112-152 (1998)
ARTICLE NO. CP985906

Reconstructing Volume Tracking?!

William J. Rider* and Douglas B. Kothie

* Applied Theoretical and Computational Physics Division, Hydrodynamic Methods Group (X-HM),
tMaterials Science and Technology Division, Structure/Property Relations Group (MST-8),
Los Alamos National Laboratory, Los Alamos, New Mexico, 87545
E-mail: wjr@lanl.gov, dbk@Ilanl.gov

Received May 14, 1997; revised December 15, 1997

A new algorithm for the volume tracking of interfaces in two dimensions is pre-
sented. The algorithm is based upon a well-defined, second-order geometric solution
of a volume evolution equation. The method utilizes local discrete material volume
and velocity data to track interfaces of arbitrarily complex topology. A linearity-
preserving, piecewise linear interface geometry approximation ensures that solutions
generated retain second-order spatial accuracy. Second-order temporal accuracy is
achieved by virtue of a multidimensional unsplit time integration scheme. We detail
our geometrically based solution method, in which material volume fluxes are com-
puted systematically with a set of simple geometric tasks. We then interrogate the
method by testing its ability to track interfaces through large, controlled topology
changes, whereby an initially simple interface configuration is subjected to vortical
flows. Numerical results for these strenuous test problems provide evidence for the
algorithm’s improved solution quality and accuracyg 1998 Academic Press
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1. INTRODUCTION

Volume tracking methods have enjoyed widespread use and success since the mid-1
yet they possess solution algorithms that are too often perceived as being heuristic
without mathematical formalism. Part of this misperception lies in the difficulty of applyi
standard hyperbolic PDE numerical analysis tools, which assume algebraic formulati
to a method that is largely geometric in nature (hence, the more appropriatedkenme
tracking). To some extent the lack of formalism in volume tracking methods, manifes
as an obscure underlying methodology, has impeded progress in evolutionary algorit|
improvements.

1 This work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laborz
under Contract W-7405-ENG-36.
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In this paper we clarify the methodology underlying modern volume tracking methoc
and, in the process, present a new two-dimensional algorithm that is constructed fro
geometric solution of a volume evolution equation. The solutions are second order in sy
through the use of alinearity-preserving piecewise-linear interface geometry approximat
Second-order temporal accuracy is realized with a novel multidimensional unsplit ti
integration scheme. We describe our solution method whereby volume fluxes are comp
with a set of straightforward geometric tasks.

Basic features of volume tracking methodR.is first instructive to review the common
features of most volume tracking methods. To begin, fluid volumes are initialized in e
computational cell from a specified interface geometry. This task requires computing fl
volumes in each cell containing the interface (hereafter referred maxaxicells). Exact
interface information is then discarded in favor of the discrete volume data. The volume c
is traditionally retained as volume fractions (denoted dwereafter), whereby mixed cells
will have a volume fractiorf between zero and one, and cells without interfapesgcells)
will have a volume fractiorf equal to zero or unity. Since a unique interface configuratio
does not exist once the exactinterface location is replaced with discrete volume data, det
interface information cannot be extracted until an interfacedsnstructedThe principal
reconstruction constraint is local volume conservation, i.e., the reconstructed interface r
truncate cells with a volume equal to the discrete fluid volumes.

Interfaces are “tracked” in volume tracking methods by evolving fluid volumes forwa
in time with solutions of an advection equation. At any time in the solution, exact interfa
locations are not known; i.e., a given distribution of volume data does not guarantee a un
interface. Interface geometry must be inferred, based on local volume data and the ass!
tions of the particular algorithm, before interfaces can be reconstructed. The reconstru
interface is then used to compute the volume fluxes necessary to integrate the volume
lution equations. Typical implementations of these algorithms are one-dimensional, v
multidimensionality obtained through operator splitting [1].

We begin in Section 2 with a historical perspective of volume tracking methods. Next,
Section 3, governing fluid volume equations are derived from basic principles. This deri
tion is straightforward for flows that are incompressible, but considerably more involv
for flows with compressibility. In Section 4 our solution method is detailed with the help
a set of concise geometric operations. (A flow chart of the principal algorithmic steps c
cussed in Section 4 is shown in Fig. 1.) Finally, in Section 5, we interrogate our method
computing gross interface topology changes, whereby an initially simple interface con
uration is subjected to flows with appreciable vorticity (see also Appendix B). An exam|
of the performance of our volume-tracking method on a simpler test (one without topolc
changes) is shown in Fig. 2, where a slotted-cylinder [2] is shown before and after ¢
revolution.

2. HISTORICAL PERSPECTIVE

Table 1 summarizes the salient features of notable volume tracking methods publis
since 1974. Listed for each method are important aspects of the interface reconstruc
and volume advection algorithms. Identifiable reconstruction features include the assu
interface geometry, which tends to be either piecewise constant, piecewise constant/“s
stepped,” or piecewise linear; and the method used for computing the interface normal, w
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FIG. 1. Flow chart of the four basic steps comprising our volume-tracking method: (1) discrete mater
volume data is provided on the computational domain; (2) a piecewise linear interface is reconstructed (
tion 4.2); (3) material volume fluxes are computed as truncation volumes (here shown for the unsplit integra
discussed in Section 4.3); and (4) the volumes are integrated to a new time level (Section 4.4). Each step ut
the geometric toolbox described in Section 4.1.
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FIG. 2. Performance of our method on Zalesak’s slotted-cylinder test problem [2] using a 10O grid.
Shaded portions represent a reconstruction of the initial conditions, whereas the line segments delineate the
cylinder after one revolution. The shaded region boundary and line segments virtually overlay, except for |
curvature regions (i.e., the sharp corners), where smoothing has occurred. The corner errors, however, are
small in comparison to more traditional methods that cannot maintain a sharp interface.
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TABLE 1
Reconstructed Interface Geometry and Time Integration Method Used in a Variety
of Published Volume Tracking Algorithms

Author(s) Reconstructed interface geometry Time integration
DeBar [3] Piecewise linear, operator split Operator split
Noh and Woodward [4] Piecewise constant, operator split Operator split
Hirt and Nichols [5] Piecewise constant, stair-stepped, multidimensional Operator split
Chorin [6] Piecewise constant, stair-stepped, multidimensional Operator split
Barr and Ashurst [7] Piecewise constant, stair-stepped, multidimensional Operator split
Ashgriz and Poo [8] Piecewise linear, operator split Operator split
Youngs [9] Piecewise linear, multidimensional Operator split
Pilliod and Puckett [10, 11] Piecewise linear, multidimensional Multidimensiona

is either one-dimensional (operator split) or multidimensional. Similarly, time integration
the volume advection equation can be constructed in an operator split or multidimensi
fashion. Below we summarize briefly the chronology and impact of these development

2.1. The Genesis of Volume Tracking

Within a short period of time in the early 1970s, the first three volume tracking met
ods were introduced: DeBar’'s method [3], Hirt and Hichols’ VOF (for volume-of-fluid
method [12, 13], and Noh and Woodward’s SLIC (for simple line interface calculatio
method [4]. Each of these methods chose a different reconstructed interface geometry
DeBar algorithm used a piecewise linear approximation, the VOF method used a pie
wise constant/“stair-stepped” approximation, and the SLIC algorithm invoked a piecew
constant approximation. As shown in Table 1, most volume tracking algorithms publist
to date fall into one of these three interface reconstruction categories; piecewise cons
piecewise constant/stair-stepped, or piecewise linear. DeBar’s piecewise linear choice
the reconstructed interface geometry is still generally preferred in modern volume track
algorithms.

The SLIC method approximates interfaces as piecewise constant, where interfaces w
each cell are assumed to be lines (or planes in three dimensions) aligned with one o
logical mesh coordinates. This choice of a simpler interface geometry (relative to Deb:
piecewise linear choice) appears to have been made to facilitate treatment of muigEple (
materials within a given mixed cell. In piecewise constant/stair-stepped methods suc!
VOF, interfaces are also forced to align with mesh coordinates, but are additionally allov
to “stair-step” (align with more than one mesh coordinate) within each cell, depending uj
the local distribution of discrete volume data.

Interface normals are computed in DeBar’'s method with one-dimensional volume fr.
tion differences, i.e., by considering only those cells sharing a face across which volt
fluxes are to be estimated. In this sense the reconstruction can be considered “operator
since the interface normal follows from one-dimensional differences based upon the cur
advection sweep direction. A method similar to DeBar’s method is described in the m
recent work of Norman and Winkler [14], where it is attributed to earlier work of LeBlanc
The SLIC method, as in DeBar’s method, estimates interface normals with operator ¢
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differences. Modern SLIC implementations have improved slightly via use of multidi
mensional operators (8 3 stencil in two dimensions) for the normal and center-of-mas
coordinates to aid in placing the interface within the cell [15]. The VOF algorithm also us
a multidimensional operator in determining interface orientation. This information hel
position the reconstructed stair-stepped interface within each cell.

Another pioneering development is attributed to James LeBlanc of Lawrence Liverm
National Laboratory. LeBlanc’s method, as described by Bowers and Wilson [16, 1
has an algebraic (rather than geometric) basis. LeBlanc’s scheme for the transport of
umes to and from mixed cells (the so-called “mixed-to-mixed” cell transport), howevi
also has a geometric interpretation. Close scrutiny of this mode of transport reveals
LeBlanc’s “area” factors are nearly identical to those used in a subsequent piecewise il
scheme devised by Youngs (discussed later) [9].

Many early volume tracking methods were devised and formulated algebraically (i.
using combinations of upwind and downwind fluxes) rather than geometrically. In fact, so
low-order methods (e.g., SLIC or VOF) can be derived a number of ways: algebraica
geometrically, or heuristically. The chosen derivation for these cases is largely a matte
taste. For piecewise linear methods, however, a geometric framework is preferable bec
concise algebraic descriptions can be difficult, especially in three dimensions. To facilit
comparisons with our piecewise linear method, therefore, we will interpret volume tracki
methods geometrically where possible, while keeping in mind this interpretation might
contrary to the original authors’ philosophy. For a current reference on algebraic approac
to volume tracking methods, see the recent paper by Rudman [18].

2.2. Piecewise Constant Volume Tracking Methods

Many piecewise constant volume tracking algorithms have been published subseq
to the VOF and SLIC algorithms, e.g., see Chorin [6] and Barr and Ashurst [7]. As seer
Table 1, newer versions of these methods offered improvements such as a multidimensi
reconstruction algorithm, but operator-split time integration techniques have stillbeenre
upon. In general, these methods have been evolutionary, but still retained the simpl
piecewise constant geometry assumption.

A notable feature of the VOF method is that its volume fluxes can be formulated alg
braically, i.e., without needing an exact reconstructed interface position. The volume flu
can be expressed as a weighted sum of upwind and downwind contributions, depen
upon the orientation of the interface relative to the local flow direction. If the reconstruct
interface is parallel to the flow, an upwind flux is used; otherwise a portion of downwir
flux is added to counteract numerical diffusion brought about by the piecewise const
upwinding. This approach, which falls into the general family of flux-corrected transpc
methods [2, 19] (simplifying its analysis), was the underlying theme behind the design
the VOF method. This flux-limiting methodology has also been used recently to defi
modern variants, e.g., see [18, 20].

A feature characteristic of piecewise constant volume tracking methods (with or with
stair-stepping) is the unphysical creation of what Noh and Woodward terméibtggm
(“floating wreckage”) andetsam(“jettisoned goods”). These terms are appropriate fo

1In atrue sense DeBar'’s linear reconstruction is not finding a “normal’” to the interface, but rather estimatir
linear distribution of the volumes based solely on one-dimensional information.
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isolated, submesh-size material bodies that separate from the main material body bec
of errors induced by the volume tracking algorithm. These material remnants tend tc
ejected from interfaces in piecewise constant volume tracking methods when the f
has significant vorticity and/or shear near the interface. An example of this behaviol
demonstrated clearly with the SLIC results presented later. The presence of flotsam
interfaces can severely compromise the overall interfacial flow solution, especially wt
interface dynamics (e.g., surface tension and phase change) are also being modeled.

2.3. Piecewise Linear Volume Tracking Methods

In the early 1980s, volume tracking methods were advanced significantly by the n
piecewise linear schemes of Youngs and coworkers [9, 21]. Youngs’ methods positio
each reconstructed interface line, defined by a slope and intercept, within the volume f
tion control volume (cell). This is in contrast to DeBar’s method, where the reconstruc
interface was positioned across cell faces. The slope of the line is given by the interf
normal (gradient of the volume fractions), and the intercept follows from invoking vo
ume conservation. The interface normal is determined with a multidimensional algorit!
(9-point stencil in two dimensions, 27-point stencil in three) that does not depend uy
the sweep direction. Interestingly, Youngs’ second method cannot reconstruct a voll
distribution resulting from a line despite its choice of a linear basis in a cell. The methc
of Youngs, formulated for both two [9] and three [21] dimensions on orthogonal mesh
were subsequently adopted in many high-speed hydrocodes involving material interf:
[22-25].

The two-dimensional (2D) and three-dimensional (3D) piecewise linear methods de
oped by Youngs differed by more than just dimensionality. Although the time integrati
scheme for both methods was identical (operator splitting), the normal used for interf
reconstruction was more accurate in the 2D algorithm than the 3D algorithm. The interf
normal computed in Youngs' 2D algorithm will reproduce a line, regardless of its orient
tion on an orthogonal mesh, and is, therefore, second-order accurate (according to Pi
and Puckett’s criteria [10, 26]). The 3D normal will reproduce a plane for certain simg
orientations; hence, the algorithm is not formally second-order accurate. We will refel
Youngs’ 2D and 3D methods as “Youngs' first method” and “Youngs’ second method,” |
spectively, because of this important accuracy difference. It is obviously desirable to re
second-order accuracy in a piecewise linear volume tracking method, otherwise a line
plane in 3D) will not be preserved after simple translation.

Many extensions and enhancements to the significant work of Youngs have occu
since its introduction. Johnson extended Youngs’' 2D method to nonorthogonal mes
[22]. The first use adaptive mesh refinement (AMR) in a volume tracking method ¢
be found in [27]. Puckett and Saltzman [26, 28] coupled an AMR algorithm [29, 30]
the 3D method. Pilliod and Puckett have recently refined Youngs' algorithm in two
mensions with an unsplit, “corner-coupled” time integration scheme extension that |
second-order accuracy through the use of an improved interface normal [10, 11]. A sim
method is used in [15] for comparison with other interface tracking methodologies. Mo
[31] has recently introduced new methods for second-order interface normal approxil
tions on irregular meshes and devised a new second-order time integration scheme t
on the concept of remapping a displaced mesh. This approach couples nicely with &
trary Lagrangian—Eulerian (ALE) schemes. Finally, Kothe and coworkers have exten
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Youngs’ 3D method to unstructured meshes [32] by introducing a second-order Run
Kutta method for time integration and a robust method for plane truncation of arbitre
polyhedra.

The more recent FLAIR method [8] is similar to DeBar's method, in that piecewise line
interfaces are reconstructed across cell faces rather than within a volume bounded by
faces. The face-centering of piecewise linear interfaces in the FLAIR method results in
constructed interface that can be more continuous than a cell-centered reconstruction.
the FLAIR time-integration scheme is not presented in detail, however, direct comparis
with the current method are not made in this paper.

We will refer to the family of piecewise methodsintroduced by Youngs (and its extensiot
as PLIC (for piecewise linear interface calculation) methods. Details and capabilities
many PLIC volume tracking methods unfortunately remain obscure because of insuffici
widespread publication. Despite this fact, PLIC methods have been used successivel
high speed hydrodynamic calculations this past decade by a host of researchers. Pro
is currently being made by the authors [33, 34] and others [35] toward applying PLIC
incompressible multiphase flows.

As demonstrated later, the PLIC piecewise linear interface approximation, coupled v
a second-order time integration scheme, results in a second-order algorithm that cle
outperforms the above-mentioned classes of first-order piecewise constant methods. De
the notable improvements offered by PLIC, variants of piecewise constant (SLIC) &
piecewise constant/stair-step (VOF) methods have remained in widespread use becat
their simple implementation.

Animportant contribution in the SLIC method was a prescription for cells containing m
tiple materials. As an example, consider the actual three-material configuration in Fig
Most volume tracking methods model this situation by first reconstructing the mater
one/two-three interface (by combining material two and three volume fractions), then
one—twol/three interface (by combining the material one and two volume fractions). For
ample, the reconstructed SLIC and PLIC interfaces for this configuration are shown in Fic
The approximation will unfortunately yield reconstructed interfaces that are positioned c
rectly only in the simplest of cases. This “onion-skinning” approach for reconstructing mi
tiple interfaces can unfortunately lead to interface intersections, which causes fluid volt
to be incorrectly associated with more than one material. This intersection problem is m
acute with PLIC methods. Another problem inherent to the onion-skin model is the requi
ordering (prioritizing) of material volume fluxes at cell boundaries. Multiple material moc
els superior to these onion-skin models must be devised before volume tracking mett
can reliably model complex topology multiple-material flows.

We now derive the governing volume evolution equations. The evolution equations
trivial for incompressible flows, but require modeling assumptions for compressible flow

3. FLUID VOLUME EVOLUTION EQUATIONS

We first derive material volume evolution equations in the presence of an incompress
flow field. This is a straightforward manipulation of standard consistency relations. \
begin by definingv, the volume of materiak,

Vi = /O[k(V)dV, (13.)
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FIG. 3. Reconstructed interfaces (shaded regions) for a circle (continuous line) using the SLIC and P
methods. The piecewise constant approximation in SLIC forces the reconstruction to align with selected n
logical coordinates, whereas the piecewise linear approximation in PLIC allows the reconstruction to align natu
with the interface. Numbers in the cells denote volume fractions. (a) SLIC reconstruction. (b) PLIC reconstruct
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Actual PLIC

FIG.4. Volume-tracking methods traditionally model multiple materials with an onion-skin algorithm. Show
in the middle is an example of three-material configuration, with SLIC and PLIC representations shown on
left and right, respectively. It should be noted that if care is not taken with the PLIC method, the linear interfa
can overlap in an unphysical manner.

wherea (V) is an indicator function given by

[ 1, iffluid k is present
(V) = {0, otherwise (1b)
GivenV, the volume fractionfy is defined as
V
fie= 3 2)

where the total volum¥ is [dV. We require that the material volumes fill all space,

V=3 V.
k

or, equivalentlyy ", fx = 1.

Itis readily apparent in the following that volume tracking methods are naturally contt
volume methods and the volume fractiohgdropping thek subscript) are integrally aver-
aged quantities. Given a flow field a standard advection equation governs the evolutio
of f,

df of
—=0—> —+4+u-Vf=0 3a
at at (32)
If the flow field is incompressible, i.eV, - u = 0, the f advection equation can be recast in
conservative form:
of of
—+u-Vf - —4+V.uf)y=0. 3b
5+ s TV (3b)
An equivalent statement for (3b) is that material volumes remain constant on streamlir
Incompressibility allows this statement to be further expressed as a conservation law.
confirms our intuition that incompressible flow conserves volume, and it also conserves
apportioning of material volumes into the total volume (except for any boundary flux).

4. METHOD OF SOLUTION

We now describe our algorithm for the geometric solution of the volume evolution eqt
tions given in Section 3. Our algorithm appeals to geometry because material volume flu
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defined as material volumes passing through a given cell face over one time step, ar
n-sided polygons formed by interface line segments passing through total volume f
polygons. These fluxes are computed in a straightforward and systematic manner u
algorithms for lines intersecting-sided polygons. Our algorithms are constructed from
“geometric toolbox,” as described in Section 4.1. By using this toolbox, heuristic, “cas
by-case” logic is not required to find solutions. We also discuss our unsplit method for
time integration of the volume evolution equations.

After presenting our geometric toolbox in Section 4.1, we describe the piecewise lin
interface reconstruction in Section 4.2 (details are given in Appendix A), material v
ume flux computation in Section 4.3, and time integration in Section 4.4. Examples of
method’s performance on basic translation and rotation tests can be found in Appendi:

4.1. A Geometric Toolbox
Our 2D PLIC method requires the following geometric functions:

1. Line—line intersection
2. Point location

3. Polygon collection
4. Polygon area.

These functions are simple, well-defined, and widely used, for example, in the field of cc
putational geometry [36]. Concise algorithm design and implementation is made poss
with these functions, as is evident later in this secfidfhe capabilities of this toolbox
can also be extended to accommodate a 3D PLIC method if additional functions sucl
plane/surface intersection are incorporated [32].

Our geometric functions assume that a line is defined by the equation

n-x+p=0, 4)

wheren is the normal to the linex is a point on the line, ang is the line constant.
Computational cells are defined (in 2D) mssided polygons given by a set ofvertices
X, = (X, Yu). Any cell having volume fractiong between zero and one will possess ar
interface defined by (4). The interface line equation will in general be different in ea
interface cell; i.e., values af andp will vary (from cell to cell) since the overall interface
geometry is approximated as piecewise linear. As discussed later in this section, values
andp in (4) result from a volume fraction gradient and enforcement of volume conservati
respectively. For each interface cell, the interface line divides space into regions inside
fluid and outside the fluid, depending upon the convention chosem ffe choosen to
point into the fluid; hence, (4) will be positive for any pointying within the fluid, zero
for any pointx lying on the line, and negative for any poitying outside of the fluid.

Below we summarize each of the four geometric functions.

Function 1: Line—line intersectiolhe most basic geometric function is one that locate
the point of intersection between two lines. If the lines are actually line segments, a:
our PLIC method, steps must be taken to determine if the intersection point is valid (i
lies within segments). The intersection point is found from a simultaneous solution of 1
two line equations (with checks for parallel lines). By invoking this function only in case

2The source code for our geometric toolbox is availableap : //1une .mst . lanl.gov/Telluride/Text/
publications.html.
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iy
I 2

FIG. 5. Typical example of a 4-sided polygon formed when an interface line truncates a computational ¢
Functions 1-4 in the text are performed sequentially to compute the area surrounded by this polygon. Ari
indicate the line integration path.

where there must be a valid intersection point, costly checks for validity are avoided. A ve
intersection point will result when one end of one line segment lies “across” the intersect
point. This function is needed to find the points of intersection between the interface |
and any cell edge.

Function 2: Point locationGiven a line defined by (4), a point location function returns
true if a point &,, y,) lies inside the fluid, which is true if (4) is positive fax,f, y,). Given
a point §;, y;) on the interface, the poink{, y,) lies within the fluid if

Nx(Xy — Xi) + Ny(Yy — ¥i) > 0.

This function is needed to determine which of the cell vertXede inside the fluid.

Function 3: Polygon collectionA polygon collection function collects the vertices
(%y, ¥») Of a n-sided polygon in counterclockwise order. The polygon vertices collecte
for each interface cell are those cell vertices lying inside the fluid and interface line/c
edge intersection points. A 4-sided polygon example is shown in Fig. 5. By definition, t
adjacent cell vertices are on opposite sides of the interface line if one cell vertex lies ins
the fluid and the other lies outside. The resultastded polygon surrounds the fluid in that
cell, as seen in Fig. 5. This function is needed before the area insidedided polygon
can be computed.

The polygon collection function uses the output of Function 2, which initializes a boole
variable that describes the “state” of cell vertices with respect to the interface (i.e., inside
outside the fluid). A vertex state variable minimizes source code logic and enables rol
procedures. The benefits of this implementation are easily realized for the (fairly typic
case of an interface line passing nearby a cell vertex (see Fig. 6). In this case a dec
regarding the identity of this cell vertex is forced (based on some prescribed toleran
thereby avoiding numerical difficulties. This problem and its solution are illustrated by t
two relevant cases in Fig. 6. The cost of cell vertex ambiguity situations is an extra ver
that becomes associated with the truncated polygon.

Function 4: Polygon areaA polygon area function takes the vertices,(y,) of an
n-sided polygon, collected in counterclockwise order (the result of Function 3) and compt
the exact area enclosed by the polygon. In Cartesian geometry, the area enclosed b
polygon is given by

1 n
A= _Z(vav-'d - Xv+1yu)v (5)

2 v=1
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FIG. 6. Two examples of an interface line passing nearby a cell vertex. This vertex is “ambiguous” in tha
can be considered inside or outside the fluid, depending upon the prescribed tolerance of the boolean variab
identifies the vertex as being inside or outside the fluid. In these figures, “T” means that the vertex is inside
interface (true) and “F” means that the vertex is outside the interface (false). (a) The critical vertex is inside
fluid. (b) The critical vertex is outside the fluid.

where vertex = n + 1 is assumed to coincide with vertex= 1. In cylindrical geometry
having azimuthalq) symmetry, the area (an azimuthally-symmetric volume) is given by

n
T
A= g;(rv + rv+1)(rvzv+1 - ru+lzv)‘ (6)

The single algorithmic change required for our method to perform correctly in 2D cyli
drical rather than Cartesian geometry is the use of (6) instead of (5) for the polygon &
computation.

4.2. Reconstructing the Interface

Given the functions provided by our geometric toolbox, linear interface segments m
bereconstructedn each mixed cell. This reconstruction step requires line equation (4)
be defined for each interface segment, so an interface noraral line constant must be
determined. The line constanfollows from enforcement of volume conservation, and the
interface normah follows from volume fraction gradients. Interface reconstruction exarn
ples of simple volume fraction distributions (circles and squares) are given in Appendix
The examples in particular illustrate the importance of an accurate, linearity-presery
estimate fon.

Determining the line constaptis the most difficult reconstruction task because the valu
of p is constrained by volume conservation. In other words, the valyei®iconstrained
such that the resulting line passes through the cell with a truncation volume equal to
cell material volume/. This determination requires invertingva p) relation, in whichV
can vary linearly, quadratically, or cubically with depending upon the coordinate systen
and the shape of the-sided polygon formed by the interface segment truncating the ce
It is tempting to construct an algorithm for determinipgoased on a direct solution of
theV (p) relation. But, since this relation is often nonlinear and varies in each mixed ce
due to its dependence upon local data, a “case-by-case” implementation results that i
efficient (vectorizable or parallel), general, concise, or easily maintained and undersc
We instead choose to invert tN&p) relation iteratively in each mixed cell. The resulting
algorithm procedural logic is therefore independent of the mixed-cell properties and d
As implemented, the algorithm is simple, robust, general, efficient, and easily understc
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The line constanp is found when the generally nonlinear function
f(p) =V(p) -V,

becomes zero. Her¥ (p) is the material volume in the cell bounded by the interface
segment (with line constant @f) and the portion of the cell edges within the material.
When these two volumes are equal (to within some tolerance), the interface segmel
declared “reconstructed” in that cell. A host of root-finding algorithms are available to fir
the zero of this function, but we have found Brent's method [37, Chap. 9] to give the b
results in practice. Bisection will converge, but is slow, and Newton’s method may diver
but Brent’'s method invokes a combination of bisection and inverse quadratic interpolat
to find a near-optimal next guess for This approach is well suited for od(p) function
sinceV often varies quadratically with (see Fig. 8). Newton’s method typically converges
in half the iterations of Brent's method, but Brent's method requires less computatio
effort because an evaluation of the derivativé/ofvith respect tq is not needed.

An intelligent initial guess forp aids in efficient convergence<@—6 iterations). We
currently initialize o prior to the iteration in the following manner. Lines possessing th
interface normah are passed through each vertex of the polygonal cell, and the resulti
truncation volumes are computed. Those two lines forming truncation volumes that bot
the actual material volume in that cell provide uppefd) and lower pmin) bounds forp.
Our initial guess fop is then a linear average of,in and pmax-

Figure 7 illustrates the iterative progression of Brent's algorithm in finginfgr an
example reconstruction. We summarize with an algorithm template for finding the interfe
constantp:

1.05

T T T T T T T T T T
. ite¥\3 \iter 1 min\ ]
0.9 A
itex 2 1
0.8 -
=
0.7 ]
0.6 ]
max 1
0.5 T T T T u T ¥ T T
0.5 0.6 0.7 0.8 0.9 1 105

X

FIG. 7. An example of the iterative placement of an interface segment within a mixed cell using Bren
method, which prescribes a new value for interface line congtagdch iteration. The line is properly placed
after five iterations, although only the first three are shown here (after which progress is indistinguishable). In
bounding guesse® i, and pnay) for the line are also shown. This example corresponds td the 0.2 case in
Fig. 9b.
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Interface Reconstruction Template

1. Given an interface line segment, described by Eqg. (4), truncate a mixed cell.

2. Find and assemble thevertices of the polygon formed by the those cell vertice:
inside the fluid and the interface line/cell edge intersection points.

3. Compute the volume bounded by this polygon.

4. Determine if the polygon volume differs from the known fluid volume by some pr
scribed tolerance.

5. If the volumes differ, use Brent's method to find a new estimate forEg. (4) and
go back to step 1.

6. If the volumes do not differ, the interface line is declared reconstructed.

End template

If this template is applied only to mixed cells, an iterative search isrcomputationally
efficient, focusing efforts only where necessary. This approach is also attractive bec:
mixed cells usually comprise10% of the total cells in the computational domain, even fo
the most topologically complex cases. Also, because volume tracking methods are loc
nature, the increase in mixed cell number over a given time step is bounded because
those cells that are mixed or directly adjacent to mixed cells experience a volume frac
change. An example of the behavior of this algorithm is shown in Fig. 8, where the i
constanip and iteration count as a function of fluid volume are shown for a given interfas
normaln. The actual interface line placements are shown in Fig. 9.

4.3. Material Volume Fluxes

Integration of the material volume evolution equations discussed in Section 3 requ
the evaluation of material volume flux&¥ at each cell face. The fluxé¥ represent the
volume of material passing through a given face during the current time step. The sur
all material volume fluxes must equal the total volume flux, which for face % j)is

a 1.5 15.0
1.0 1 10.0
a
0.5 ] 5.0
0.0 0.0
00 02 04 06 038 1.0 00 02 04 06 08 1.0
Volume Fraction Volume Fraction

FIG.8. Anexample of the variation of line constamaind Brent's method iteration count for a given interface
normaln. Note the linear and quadratic dependencg a6 a function of fluid volume. The actual interface line
placements for a number of cases are given in Fig. 9. (a) Line conssard function of fluid volume. (b) Interface
reconstruction iteration count as a function of fluid volume.
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FIG. 9. Interface line placements for the case shown in Fig. 8. Darker regions correspond to the fluid wh
interface is being reconstructed. (B)= 0.1. (b) f =0.2.(c) f =0.3.(d) f =0.4.(e) f = 0.5. (f) f = 0.6.
(9) f =0.7.(h) f =0.8.()) f =0.9.

given by

Z‘Svikﬂ/z,j =0Vit12j = AtUizaz - Aiv1yzj. 7)
K

whereu is the velocity vector and is the edge area vector.

To computelV, two steps are required: (1) the polygons bounding the volume swept
the velocity field over the time step must be constructed, and (2) the amount of miateri
must be found for these polygons. The machinery to accomplish the second step has
discussed earlier (the geometric toolbox given in Section 4.1), but step 1 requires definit

Here we develop both operator split and unsplit time integration schemes, which
depicted schematically in Fig. 10. The operator split method constructs the solution i
series of one-dimensional sweeps shown in Figs. 10a, b. Usually Strang splitting [1
employed to lessen the symmetry breaking effects of the operator splitting. A naive uns
method is shown in Fig. 10c. This method has undesirable overlapping volume flux regic
In our unsplit method (Fig. 10d), the flow is considered to be completely multidimension
but the method can be constructed from the operator split method via systematic correct
shown below.

As an example, consider the formation of edge flux volumes farsmeep of an operator
split method. A sample result is shown in Fig. 11a. The steps to form the edge flux polyt
for face { + % j) are outlined in the following template.

Edge Flux Polygon Template

1. Identify the vertices of the edge being evaluated, which form the first two vertices
the flux polygon:(Xi11/2,j—1/2, Yi+1/2.j-1/2), Xi+1/2,j+1/2, Yi+1/2, j+1/2)-

2. Given the velocity normal to this edge (1,2 ;) and the time stepAt), trace charac-
teristically to locate the final verticesiXi1/2j-12 — Uit1/2,j At, Yit1/2j-1/2),
(Xi+1/2,j+1/2 — Uit12,j AL, Yiga2, j+1/2)-

End template

The unsplit algorithm requires that corrections be made to the edge (operator split) 1
volume defined above. The corrections are defined by the velocity field assumed in
algorithm. In our implementation, the corner velocity transverse to the direction of t
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FIG. 10. Face volume fluxe8V and their bounding polygons for three different time-integration scheme
in two dimensions. For operator-split integrationyadirection sweep is made in (a), followed byalirection
sweep in (b). A naive unsplit method, shown in (c), is not recommended because face-adjacent polygons ov
hindering conservative, monotonic volume advection. In our unsplit method of (d), the polygons are constructe
tracing along upwind characteristics, yielding a multidimensional, “corner-coupled” fluxing of material volume
Problems with an unsplit integration scheme can necessitate redistribution algorithms as shown in Fig. 12. (z
x-direction sweep of an operator-split method. (by-Alirection sweep of an operator-split method. (c) A naive
multi-dimensional unsplit method. (d) The unsplit multi-dimensional method.

edge under consideration is “upwinded” given the sign of the normal edge velocity. |
example ifu;11/2; > 0, the velocitiesy; j+1> Will define the corner corrections to the
flux volume at the(i + % j) edge. An example corner correction polygon is depicted il
Fig. 11b. The correction polygons are computed according to the following corner fl
polygon template.

Corner Flux Polygon Template

1. Identify the vertex of the corner being evaluated, which forms the first vertex in t
flux polygon: (Xi11/2,j+1/2, Yi+1/2,j+1/2)-

2. Using the velocity normal to this edge {12 ;) and the time stepAt), trace charac-
teristically to the next vertexXi+1/2 j+1/2 — Ui+1/2,j At, Yig1/2, j+1/2)-
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uAt 3 uAt

4 1

FIG. 11. Edge and corner polygons formed at facer % j) when tracing back along a positive velocity
field. The edge polygon that encloses volume 8k, ; is defined by the four points in (a) for thesweep of
an operator-split time integration. For multidimensional unsplit time integration, the edge polygon in (a) must
modified by corner fluxes such as the triangle in (b). (a) Quadrilateral edge volume flux polygon. (b) Triangt
corner volume flux polygon.

3. Using the upwinded transverse velocity at the corner, trace characteristically to
final vertex:(xiH/z,jH/z — Uit+1/2,j At, Yi+1/2,j+1/2 — vi+1/2,j+1/2At). The value of
Viy1/2,j+1/2 IS determined by the sign afi; 1> j. For example, ifui112; > O,
thenviy 12, j 1172 = Vi j11/2-

End template

Given the edge and corner flux polygon templates, unsplit edge flux polygons at f:
i+ % j) are found according to the following template.

Unsplit Edge Flux Polygon Template

1. Apply theedge flux polygon template

2. Apply thecorner flux polygon templatat (i + % i+ %).

3. If the upwinded transverse velocity @12 j+1/2, Yi+1/2,j+1/2) IS positive, subtract
the corner flux volume; otherwise add it.

4. Apply thecorner flux polygon templatet (i + % i - %).

5. If the upwinded transverse velocity @ 1/2 j—1/2, Yi+1/2,j—1/2) IS positive, add the
corner flux volume; otherwise subtract it.

End template
Next, we discuss our temporal integration methods.
4.4. Time Integration

We now consider the time integration of (3b) for incompressible flows, whereby tl
materialk volume fractionsf¥" at discrete time leveh are marched forward in time to
stepn + 1. In performing this time integration, care must be taken to ensure that mate
volumesVy remain volume-filling in each cell; i.e., material volumes must sum to th
total cell volumeV (=", V). For incompressible flow, an additional global volume-filling
constraint applies, hamely material volume summed over the entire mesh must als
conserved (this applies locally as well). For compressible flows, any local discrete volur
filling errors can be absorbed by the fluid compressibility, but for incompressible flo
this can lead to unacceptable errors. If compressibility (velocity divergence) is used
absorb local volume-filling errors for incompressible flows, the integration accuracy of t
right-hand side of (3b) degrades accordingly.

A key pointin our time integration scheme for the incompressible flow volume evolutic
equations is the recognition that discrete velocity divergences are not necessarily zero
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rather a function of the convergence tolerance used in obtaining the linear system soluti
To employ this “divergence correctiorly’ - u is added to both sides of (3b), giving
%Jrv.(uf):fv.u. (8)
By applying this correction, even for incompressible flows, we find that local and glok
volume-filling constraints are adhered to much more closely. We integrate (8) forwarc
time to advance volume fractions froff" to £+ in the presence of incompressible
flows.

Our time integration schemes operate on two basic sets of cells: those thakadand
those that aractive Before integration proceeds, those cells defined as mixed and act
are flagged appropriately. Mixed cells are labeled as such if:

1. Their volume fractiond satisfye < f <1 —¢; or
2. Their volume fractiond satisfy f > 1 — ¢; anda face is shared with an empty cell
having f <e.

Active cells are labeled as such if at least one cell in their domain of dependence is mi;
In two dimensions, the domain of dependence for operator-split time integration is th
cells along the current sweep direction, while it is & 3 array of cells for unsplit time
integration. In flagging mixed and active celss a small number relative to zero, taken to be
1x 10~ *?for this work (appropriate for double precision arithmetic). This cell categorizatic
localizes algorithm computational work in the proximity of interface. For 2D computatior
of topologically simple interfaces, we have found the work required to time-integrate t
volume evolution equations scales like the square root of the total grid size.

For an operator-split time integration scheme, (8) must be integrated twice in two
mensions (thrice in three dimensions), one integration per each sweep, and one swee
dimension. The volume fractiorfig°"+ are therefore constructed from multiple, sequentia
solutions to (8). In two dimensions, volume fractiofts” are advanced in the first sweep
to f according to

£ gpkn _ SVisai o) — OViceij i
= i Vi

L atge Aitsi,j+5j Ui+6i,j+6jv-—-Ai—6i,j—(Sj Ui-sij-si )
i

and in the second swedpare advanced to their final valué4"+?:

Vi jrsj — Vizsij—s
Vi,j

kn+l _ ¢
fiy =1

kit Aitsi j+s; Uitsi j+sj — Ai—si j—sjUi—si,j—sj

+ Atf" .
(] V .

i

(10)

Since our method is implemented on structured, orthogonal meshes in Cartesian (or
muthally symmetric cylindrical) geometry, each sweep is associated with eitlxefr aior
y (2) direction. For sweeps in the(r) direction,(si, §j) = (1/2, 0), and for sweeps in the
y (2) direction, (i, 8j) = (0, 1/2). Sweep direction order is alternated every time step t
minimize asymmetries induced by the sequential sweeping process.

Note the RHS rightmost terms in (9) and (10), which are the important divergence c
rection terms. These terms, needed to enforce volume-filling constraints, contain volt
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fractions f at differing time levels, explicit (time leved) for the first sweep and implicit

(time leveln + 1) for the second sweep. This form of the correction is found to be optim
in practice, giving a net divergence correction that employs a volume fraction having
intermediate time level. We now summarize our operator-split time integration template

Operator-Split Time Integration Template

1. Flag all mixed, active, and isolated cells.

2. Compute the discrete velocity divergenceu; j in all flagged cells.

3. Reconstruct interfaces in all mixed cells according to the Interface Reconstruct
Template given in Section 4.2.

4. Compute edge volume fluxéd/ in all flagged cells according to the Edge Flux
Polygon Template given in Section 4.3. If this is»alr) direction sweep, the fluxes
will be right-face fluxes; if this is § (z) direction sweep, they will be top-face fluxes.

5. Advance volume fraction$ in time using (9) if this is the first sweep or (10) if this
is the second sweep.

6. Look for and conservatively redistribute any volume fraction undershdotsQ) or
over shoots { > 1).

End template

As a final note, regarding operator-split time integratiory ifu = 0 is assumed, then
employing the identity (for 2D Cartesian geometry)
au ov
ax 9y
is often useful, especially for operator-split time integration discretizations of (3b). Tt
approach appears to improve the discrete conservation properties of operator-split inc
pressible flow time integration [11, 35].
As opposed to an operator-split time integration of (8), an unsplit time integration sche
advances time level volume fractionsf®" to f*"*+1 with one equation, given for two
dimensions as

K,
Vig12j — 8Vicyz _ Vi j+12 — 8Vij—12 LAt fi,jn 4+ fkntl

glontl — gk
" " Vi Vi 2

V - Uij.
(11)

Note the centered time leveh (+ 1/2) used for the volume fraction in the rightmost
divergence correction term on the RHS above. We now summarize our unsplit time
tegration template.

Unsplit Time Integration Template

1. Flag all mixed, active and isolated cells.

2. Compute the discrete velocity divergengeu; j in all flagged cells.

3. Reconstruct the interface in all mixed cells according to the Interface Reconstruct
Template given in Section 4.2.

4. Compute volume fluxedV in all flagged cells according to the Unsplit Edge Flux
Polygon Template given in Section 4.3.

5. Advance volume fraction§ in time using (11).

6. Look for and conservatively redistribute any volume fraction undershdotsQ)
or overshoots { > 1). The redistribution only acts on fluid in mixed cells, and in
proportion to the fluid volume donating or receiving the redistributed fluid volume.
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FIG. 12. Examples of two problems that can occur with the corner flux polygons in the presence of spati
varying velocity fields. (a) Fluid is not fluxed. (b) Fluid is fluxed twice.

End template

We have presented operator-split and unsplit algorithms for the time integration of
our volume evolution equation. These discretizations have assumed that the flow is inc
pressible. We illustrate the ability of our method to track fluid bodies in simple translatior
and rotational (hence, solenoidal) flow fields in Appendix B. Since these standard tests
frequently used in the literature to assess advection methods, these translation and rof
test results will facilitate comparison with other methods.

Problems can arise, however, when the velocity field possesses spatially varying v
city. This spatial variation can sometimes lead to fluid being multiply fluxed or not fluxe
at all. These subtle fluxing errors, which we identify and correct, are shown in Fig.
for the two most common instances. We currently correct these situations with a Ic
redistribution algorithm. The tendency for these problems to occur is greater for algorith
possessing multidimensional time-integration schemes thabtlmcorporate the corner
flux corrections to the edge fluxes (i.e., the method shown in Fig. 10c).

As long as the CFL condition is met, one-dimensional (edge) fluxes are without s
tematic problems. For velocity fields that vary in space, however, multidimensional fluy
possess small inconsistencies. Small volumes of fluid can be fluxed twice or not at
As a consequence, there is a prospensity for methods based on multidimensional fl
to produce small over/undershoots. This can be overcome through the use of a nume
velocity divergence definition,

V-u:ZV~(ufk), (12)
k

which follows from the governing equation and ensures that the fractional volumes
volume filling. Equation (12) is not equivalent to the usual face-centered velocity diverger
for the unsplit time integration because of the choice made for transverse velocities.
difference is present whenever the flow contains spatially varying vorticity.

5. RESULTS FOR VORTICAL FLOWS

Flows that induce simple translation or solid body rotation of fluid bodies do not ac
quately interrogate interface tracking methods designed for topology changes. Transle
and rotation serve as useful debugging tests, but they are not sufficient for definitive an
sis, in-depth understanding, or final judgement. Difficult (yet controlled) test problems h:
ing flows that bring about topology change elucidate algorithm strengths and weakne:
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relevant to modeling interfacial flows. Also, with controlled test problems, assessmen
the interface tracking method is not obscured by subtleties of physics and algorithms in
flow solver.

Literature surveys indicate that uniform translation is the customary barometer for
terface tracking methods. Solid body rotation tests accompany translation tests in n
complete analyses. Typical examples of such tests can be found in [8, 20]. An accept
tracking method must translate and rotate fluid bodies without significant distortion
degradation of fluid interfaces. Mass should also be converged rigorously in these ce
Translation and solid body rotation, however, enable omhjramalassessment of interface
tracking algorithm integrity and capability because topology change is absent. Additio
tests involving flows with nonuniform vorticity must be considered before a complete &
sessment can be made.

We therefore consider in this section two new 2D test problems that sufficiently ch
lenge algorithm capabilities, provide meaningful metrics for measurement of algoritt
performance, and are easy to implement. These problems, characterized by flows
ing nonconstant vorticity, were introduced recently in [15] as proposed metrics for a
method designed to track interfaces undergoing gross topology change. Beside indu
topology change, the test problems are representative of interfacial flows in real phys
systems, e.g., instabilities such as the Rayleigh—Taylor, Richtmeyer—Meshkov, and Kel
Helmholtz instabilities, where sharp gradients in fluid properties lead to vortical flow.
proper assessment of interface tracking methods should therefore impose strong vor
at the interface.

Our test problems possess vortical flows that stretch and potentially tear any interfe
carried within the flow. The first problem contains a single vortex that will spin flui
elements, stretching them into a filament that spirals toward the vortex center. The flow f
is taken from the “vortex-in-a-box” problem introduced in [38, 39]. The second proble
has a flow field characterized by 16 vortices as introduced in [40]. This flow field caus
fluid elements to undergo large topological changes. In the converged limit, fluid eleme
will not tear, instead forming thin filaments. The flow field in both problems is solenoide
and is given cosinusoidal time-dependence following Leveque [41]. The temporal cos
term gives the flow the nice property of returning any fluid configuration to its initial sta
after one period. By forcing the flow to return to its initial state, quantitative comparis
and evaluation can be simply computed with the help of error norms and convergence t

5.1. Test Problems

All test problems have identical initial conditions: a circle (radius 0.15) is centered
(0.50, 0.75) in a unit square computational domain. The domain is partitioned with eitl
322, 64%, or 128 orthogonal, uniform cells. All boundaries are periodic. A scalar fielc
is initialized to unity and zero inside and outside the circle, respectively. For those ce
containing the circular interface, the scalar field is set to a value between zero and on
proportion to the cell volume truncated by the circle. This field represents a characteri
(or color) function, which for our purposes is the fluid volume fraction for a circular flui
body, i.e., the volume fraction is 100% inside the circle and 0% outside.

Single vortex. A single vortex is imposed with a velocity field defined by the strean
function [38],

U= lsinz(yzx)sinz(yry), (13)

T
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FIG. 13. (a)“Exact” solution at = 3 for a circular fluid body placed in the single-vortex flow field on a.28
grid. (b) “Exact” solution at = 0.5 for a circular fluid body placed in the deformation flow field on a?@&d. In
both cases the body is represented and tracked with analytical marker particles. (a) Single-vortex. (b) Deform
field.

whereu = —9W¥/dy andv =9W¥/dx. This is a solenoidal velocity field, which will deform
bodies and promote topology changes. When the circular fluid body is placed in this fie
it stretches and spirals about the center of the domain, wrapping around the center apj
imately two and a half times biy= 3, as shown in Fig. 13a. This represents an “exact
solution because fluid elements in the body for this case are represented with marker
ticles that move with the analytic velocity field given by (13) above. The marker particl
are initialized in a uniformly spaced» 4 array in each cell falling completely inside the
circular fluid body. The 4x 4 particle array is truncated in cells containing the circula
interface and is absent in cells lying outside the circular interface.

Deformation field. A complex velocity field given by the stream function [40]

v = %sin <47r (x+%>) cos<47r (y+%>) (24)

induces even more radical deformation and topology change of fluid bodies, providin
more stringent test than the field given by (13). This velocity field induces large deformat
ofthe circular body by = 3, asis evidentin Fig. 13b, where results with the analytic particl
method are shown. By this time, a large fraction of the circle has been entrained into
two nearest vortices, with a smaller portion (the thin filaments) having been entrappec
two nearby vortices.

Time-reversed flowfields Following Leveque [41], the single vortex and deformation
velocity fields can be multiplied by c@st/T), giving a flow that time-reverses (returns to
its initial state) at = T. In most of our tests we choose a peribd= 2, hence the circular
body will undergo large deformations until the first half peribe( 1), whereupon the flow
will reverse, returning the circle to its initial undeformed state at the full petied2). Error
measurements are performed on the differences in data observed betw@andt = T.
These differences should ideally be zero, agthe0 andt = T states should be identical.
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5.2. Results

The performance of our volume-tracking method on these tests in assessed with |
gualitative and quantitative fidelity measures. First, a qualitative assessment is mad
comparing graphical results with the marker particle results shown previously. Secon
guantitative assessment is made with convergence results derived from error estimate:s
the following tests, unless otherwise stated, we employ a CFL number of one (basec
the maximum velocity in the domain) and use Pilliod’s method for estimating the interfa
normaln.

Single vortex. This velocity field stretches and tears the initially circular fluid body a
it becomes progressively entrained by the vortex. The entrainment is manifested as a |
thin fluid filament spiraling inward toward the vortex center. By integrating to late time
it is possible to observe the behavior of our volume-tracking method under rather extre
circumstances, whereby filaments become thinner than is supportable by the computat
mesh. Convergence results are obtained by time-reversing the flow using Leveque’s cc
term. As the reversal period becomes longer, the fluid body evolves further away from it:
initial circular configuration; hence, it must undergo increasingly complicated topologic
change to reassemble properiytat T.

Convergence results for the single vortex velocity field indicate that our method is rema
ably resilient. The method exhibits second-order convergence, even for long péried® (
where appreciable interface tearing and topological change has occurred. This is indic
by theL; error norms and convergence results shown in Table 2 for three different revel
periods. Figure 14 illustrates that solution errors (roughly a measure of phase error) are r
evident for longer reversal periods. The solution quality, however, increases remarkabl
the grid is refined (shown here for a%3grid). Convergence is aided by the regularity of the
velocity field, but the improvement with grid refinement is quite encouraging.

The under-resolved behavior of our PLIC method on the single-vortex problem is illt
trated in Fig. 15. Here the solution becomes poor when interface topology is not resol\
i.e., as exhibited by single filament breaking into a series of fluid clumps that are each <
portable by the reconstruction method. By 3.0 (Fig. 15d), the body has fragmented into
numerous pieces. Despite the breakup, however, solution convergence does occur
grid refinement.

This behavior is reasonable and expected, given the assumptions inherent in the re
struction, namely a piecewise linear interface approximation constrained by mass cor
vation. The breakup exhibited in Fig. 15 can be interpreted as an application of “numeri
surface tension” along interfaces that are resolved inadequately. High curvature region:

TABLE 2
L, Error Norms and Convergence Rates for a Circular Fluid Body Placed
in the Time-Reversed, Single-Vortex Flow Field

Grid Error (T =0.5) Order I = 0.5) Error (T =2.0) Order T = 2.0) Error (T =8.0) Order T = 8.0)

32  7.29x10* 236 x 10°° 4.78 x 1072
2.36 2.01 2.78

64 142x10* 5.85x 104 6.96 x 1072
1.86 2.16 2.27

128 390x10° 1.31x10* 144 x 1073
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FIG. 14. Results for a circular fluid body placed in the time-reversed, single-vortex flow field oh grigi2
(a) Reconstructed interfacestat T for T = 0.5. (b) L, error contours at = T for T = 0.5. (¢) Reconstructed
interfaces at = T for T = 2.0. (d) L, error contours at = T for T = 2.0. (e) Reconstructed interfaces at
t =T/2for T = 8.0. (f) Reconstructed interfacestat: T for T = 8.0.

those unresolvable regions having interfaces with a radii of curvature less than rouc
a mesh spacing. The piecewise linear interface approximation immediately flattens tt
regions, effectively applying numerical surface tension. Thin filament regions can alsc
the recipients of numerical surface tension, because poor linear reconstructions occ
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FIG. 15. Results for long time integration of a circular fluid body placed in the single-vortex flow field ol
a 32 grid. (a)t = 0.75. (b)t = 1.50. (c)t = 2.25. (d)t = 3.00. (e)t = 3.75. ()t = 4.50. (g)t = 5.25.
(h)t = 6.00.

these regions from inaccurate interface normal estimations. Numerical surface tensic
these high curvature and thin filament regions can be easily reduced (well below phys
levels) with increased refinement.

Deformation field. The deformation velocity field given by (14) poses a test more diffi
cult than the single vortex, forcing the circular fluid body through quite extreme topologic
changes. Time reversal is again used to obtain quantitative results. The initial positiol
the circular body falls directly between two vortices; hence, we find that the results fail
converge for longr . This is evident in Table 3, where second-order convergence is re
ized only forT = 1.0. For longer periods, the results converge to only first order. The la
of qualitative similarity between the solutions obtained on the two finest grids=a#l
(Fig. 16) is evidence for the lower convergence.

In Fig. 17 the deformation velocity field shows its ability to tear apart the circular bod
Despite the severity of the interface deformation and topology change, mass conserve
is maintained and the solution bears a qualitative resemblance to the true solution. At
coarse resolution (32, the solution is not high quality, but its qualitative correctness exhibit
the robustness we are seeking in an interface tracking method.
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FIG. 15—Continued

We conclude our deformation field examples with a brief disgression into operator-sy
time-integration methods. All results presented to this point are obtained with our uns
time-integration scheme detailed in Section 4.4. When an operator-split, time-integra
scheme is used for these tests, the observed convergence rates and error norms are ¢
to the presented unsplit results.

Operator-split, time-integration methods, however, are inferior for two important reaso
efficiency and symmetry preservation. Because volume tracking methods are dominate

TABLE 3
L, Error Norms and Convergence Rates for a Circular Fluid Body Placed
in the Time-Reversed, Deformation Flow Field

Grid Error (T = 1.0) Order I = 1.0) Error (T =2.0) Order T = 2.0) Error (T =4.0) Order T = 4.0)

32 520x10° 1.96 x 102 4.68 x 1072

1.62 0.81 1.52
64 1.69x 103 1.12x 102 1.63x 102

1.95 0.91 0.84
128 436x10* 5.95x 1073 9.08 x 1072
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X X

FIG. 16. Results for a circular fluid body placed in the time-reversed, deformation flow figld=afl for
T = 4. (a) 64 grid. (b) 128 grid.

a b
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[1] 1 0 1
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c d
- -
[} 1 rﬂ 1
X X

FIG. 17. Results for a circular fluid body placed in the deformation velocity field orfay8a. (a)t = 0.50.
(b)t = 1.00. (c)t = 1.50. (d)t = 2.00.
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X X

FIG. 18. Results at = 4.0 for a circular fluid body placed in the deformation flow field using an operator
split time-integration method on a 3@rid. In (a) the flow is time-reversed wifh = 4. These results should be
compared with the unsplit results in Fig. 19. (a) Time-reversed flow. (b) Non-time-reversed flow.

the cost of reconstructing the interface, an operator-split method is roughly twice as ex|
sive as an unsplit method (in 2D) because one extra reconstruction is required. Oper
splitting also fails to maintain symmetry, even when sweep directions are alternated.
is evident in the results of Fig. 18, which illustrate that operator-split time-integration s
lutions are inferior to those of our unsplit scheme (shown in Fig. 19). For these reasons
prefer methods based on unsplit time-integration schemes.

The results presented in this section are evidence for the topological changes our vol
tracking method must manage while tracking an initially circular fluid body placed in tt
vortex and deformation flow fields. For performance of other tracking methods on th
same problems, see the results in [15]. The methods tested in [15] are those base
particles, level sets [42], and high resolution upwind schemes such as PPM [43].

R R

FIG.19. Results at =4.0 for a circular fluid body placed in the deformation flow field using an unsplit time-
integration method on a 32yrid. In (a) the flow is time-reversed wifh = 4. These results should be compared
with the operator split results in Fig. 18. (a) Time-reversed flow. (b) Non-time-reversed flow.



140 RIDER AND KOTHE

6. CONCLUSIONS

A new second-order-accurate method for the volume tracking of material interfac
in two dimensions has been presented. The algorithm is based upon solutions of mat
volume evolution equations in which material volume fluxes are estimated geometrica
The volume fluxes are defined as the truncation volumes formed when reconstructed pi
wise linear interfaces pass through total volume fluxes bounded by characteristic flow lir
The piecewise linear reconstruction ensures second-order spatial accuracy and the
acteristic volume fluxes ensure second-order temporal accuracy (via a multidimensi
unsplit time integration scheme). A template of the simple geometric functions needec
compute the material volumes fluxes is provided in detail sufficient enough for impleme
tation. Motivating the development of this method is our need for high-fidelity models f
topologically complex interfacial flows; hence, we have integrated our method with floy
inducing gross interface topology changes, whereby an initially simple interface confi
ration is subjected to a variety of controlled vortical and shearing flows. Numerical rest
for these complex topology tests provide convincing evidence for the algorithm’s excells
solution quality and fidelity.

Several aspects of this volume-tracking methodology deserve further attention. Numer
surface tension is brought about when interfaces are approximated as piecewise lineat
this effect needs to be understood and quantified, especially for those interfacial flows wi
physical surface tension is important. A three-dimensional (piecewise planar) extensio
this method that maintains formal second-order accuracy is also of interest, in partic
the algorithms for temporal integration and plane normal estimation.

APPENDIX A: FINDING THE INTERFACE NORMAL

Unlike the line constanp, the method used determines that the interface nomisl
arbitrary; i.e., it is not constrained by volume conservation considerations. The algorit
used in determining is nonetheless crucial, being a key distinguishing aspect of volum
tracking algorithms. Simple estimations forcan cause a volume tracking algorithm to
exhibit overall first-order tendencies, i.e., an inability to reproduce linear interfaces. |
example, a method far that forces to align with mesh logical coordinates yields a low-
order volume-tracking algorithm reminiscent of the SLIC method. Other than the tempc
integration method (discussed in Sections 4.3. and 4.4), the method used for estime
of n plays a principal role in the overall accuracy of a volume tracking algorithm. In tt
following, we will first discuss three methods for computingthen illustrate below the
impact of usingn resulting from these methods on the reconstruction of simple circular a
square volume distributions.

A.l. Youngs' (Least Squares)

Our first method is an extension of Youngs’ second method [21] to general grids [3
Youngs’ second method for estimationrofvas originally developed for 3D tensor-product
meshes in which cells are orthogonal bricks having generally different widths. The ba
algorithm invokes straightforward (yet wide stencil) finite-difference approximations f
the volume fraction gradien f) to define the interface normal[21]. It is robust and
simple, but unfortunately first-order accurate, capable of reproducing a linear interface c
in certain isolated cases.
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We have extended Youngs' finite difference approximation§fdérto 2D or 3D arbitrary-
connectivity (fully unstructured) meshes. The method is based on the work of Barth [4
who has devised innovative least squares algorithms for the linear and quadratic recons
tion of discrete data on unstructured meshes. Second (and higher) order accuracy has
demonstrated on highly irregular (e.g., random triangular) meshes. In this approach, vol
fraction Taylor series expansiorigS are formed from each reference cell volume fractior
fi at pointx; to each cell neighbofy at pointxy. The sum( f;™ — f)2 over allnimmediate
neighbors is then minimized in the least squares sense using the normal equatiohs. Th
norm minimization will yield the volume fraction gradieM f; as solutions to the linear
system (in 2D)

ATAx = ATb, (15)
where
ok(Xk — Xi) k(Y — Yi) wi(fik — 1)
A: : : s b = E s
on(Xn — Xi)  ox(Yn — Yi) wn(fn - fi)

wherewy = 1/|x¢ — Xi|' (we taket = 2) and
NAS
= <Vy fi > '

Vx fi
[V fil
v, f;
IV fil

The normal is then computed as

where

Vil = (Vs )2+ (Vy )2,

Here we choose the eight nearest neighbors on a two-dimensional Cartesian grid (th
all neighbors sharing a vertex).

Least squares reconstruction methods, such as that implied by the linear system al
are quite powerful and attractive. They are not married to any particular mesh topolc
or dimensionality; hence they are easily amenable to any (unstructured) 2D or 3D m«
All that is required is a set of discrete data points described by their data values and t
physical location.

Despite the attractive characteristics of least squares methods, we have yet to cons
a linear system whose solution yields interface normailsat are generally second-order
accurate. We will continue to pursue this methodology, however, because it offers pert
the best possibility (over other methods) for a generally second-order acowstienation
in 3D. Careful construction of data-dependent weights might provide a linear system 1
yields such a second-order discretization.
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A.2. Error Minimization

In the second method does not result from an explicit expression, but rather fron
a least squared error minimization procedure that is iterative (but local). This methoc
shown to be second-order accurate. The second method for estimatias lsfised upon
the recent volume tracking work of Pilliod [10], in which particular scrutiny is paid tc
the interface reconstruction step. They conclude that methods for estinmaliaged on
a minimization of error (by some measure) are optimal. Developed as a result of 1
analysis was an algorithm forthat, like our first method, is also guided by a least square
prescription for error. In the least squares procedure, reconstructed interface line segn
are extrapolated into nearest-neighbor cells (all cells bordering the reference mixed cell),
the nearest-neighbor truncation volumes are computed (in addition to the reference m
cell). Differences between nearest-neighbor truncation volumes and their actual mat
volumes are minimized in the least squares sense by iteratively changing the refere
mixed cell value ofn until convergence is achieved. This method is second-order in tl
sense that it is able to reconstruct linear interfaces exactly.

Unfortunately, the least squares method can be prohibitively expensive, especialll
3D, because interfaces must be reconstructed in all mixed cells bordering the refere
mixed cell each iteration that is required to fimd~or 2D tensor-product Cartesian meshes
however, this expensive iterative procedure can be circumvented with an innovative *
least squares” (FLS) procedure [10], making the method viable.

A.3. Swartz’s Method

The final method we consider for estimatings based on the work of Blair Swartz
[45]. This iterative procedure, which also preserves linear interfaces (is second-order),
shown recently to converge quadratically on generally irregular 2D meshes [31]. The b:
algorithm consists of several steps, shown schematically in Fig. 20. First, a reason
estimate fon is made (e.g., using Youngs’ second method); then the interface line segm
is reconstructed according to the Interface Reconstruction Template given in Section 4.
this paper. Second, this normal is assigned to a selected mixed cell bordering the refer
mixed cell, and a linear interface is reconstructed in the border mixed cell (Fig. 20a). Th
a line is defined whose endpoints are the interface centroid in the reference mixed cell
the interface centroid in the border mixed cell (Fig. 20b). The normal to this line (connecti
the centroids) defines the new guessrforhis process is repeated until convergence.

In applying the Swartz algorithm to interface reconstruction, we have found the followil
modifications useful. First, the stencil should be symmetric; i.e., all mixed cells borderi
the reference mixed cell (in 33 block) should contribute to the new guessripnot just
one selected border cell. An inverse-distance weighted contribution to the new guess f
is used for all border mixed cells. Our modified Swartz algorithrmfproceeds according
to the following template:

Modified Swartz Interface Normal Template

1. Guess a normal for the interface line in the reference mixed cell.

2. Givenn, compute the interface line position in the reference mixed cell by finding tf
interface constant in (4).

3. Using the reference mixed cell nornmakcompute interface line positions in all mixed
cells bordering the reference mixed cell (within & 3 stencil).
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FIG. 20. lllustration of the basic Swartz algorithm steps required to find the interface narimal reference
mixed cell, shown here as the center cell obaBstencil. (a) An initial guess farresults in an initial reconstructed
interface line in the reference mixed cell. (b) A new guessnfas the normal to the line connecting interface
line centroids of the reference cell and a selected bordering mixed cell. (c) If the interface has curvature, mul
bordering mixed cells are needed to find the new guess &ir.

4. Connect the interface line centroid in the neighboring mixed cell with an interfa
line centroid in the cell being reconstructed. Repeat for all mixed cells in the sten

5. Define a new normal,e, as the average of all of the lines formed in the previou:
step (using an appropriate weighting such as the inverse distance of the neighbc
line centroid to the cell being reconstructed).

6. If nnew differs fromn by some prescribed tolerance, go to step (2).

End template

A modified Swartz algorithm based on the template above yields a second-order |
maln for generally nonlinear interfaces (those having curvature). This algorithm perfori
equally well in 2D Cartesian and azimuthally symmetric cylindrical coordinate systen
It can also find a second-order normal on meshes more general than the tensor-pre
meshes required for Youngs’ second method or the least squares minimization method
example, it has been applied successively on 2D nonorthogonal, unstructured meshes
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Extension to three dimensions also appears to be a straightforward exercise. The moc
Swartz method does not, however, lack restrictions or disadvantages. First, it can be
hibitively expensive, especially in 3D, because interfaces must be reconstructed in all mi
cells bordering the reference mixed cell, for each iteration required tanfiiuest like the
least squares method). Second, it is outperformed by Youngs’ second method and the
squares method when the interface is poorly resolved (because of the lack of borde
mixed cells). Otherwise, it is close in behavior to the procedure described next, and
such, will not be explored in detail for dynamic problems.

A.4. Reconstruction Accuracy

The accuracy of these interface normal algorithms is most easily assessed by analy
estimates oh operating on discrete volume data that replicates known (exact) interfs
geometries, such as a circle or square. If the variowestimates are used to perform
piecewise linear interface reconstructions on the data, the differences and errors ca
visualized, as shown in the next section.

We now assess the accuracy of the interface normal algorithms detailed in the prev
section by applying them to known circular and square distributions of volume data.
avoid artificial regularity of the results, we offset the circle and square centers (relative
mesh logical coordinates). For all tests, we partition a unit square domain with frém 1
to 160 orthogonal, uniform cells. Discrete volume data is initialized on the domain |
replicate either a circle (radius 0.368) centered at (0.525, 0.464) or a square (side le
0.512) centered at (0.468, 0.541). The discrete volume initialization is exact in every ¢
S0 we expect computational values of the interface norm#dsconverge to the analytical
values as the mesh is refined.

Graphical pictures of the piecewise linear interface reconstructions enable a qualita
assessment of eachalgorithm, as shown in Figs. 21-23. Results are displayed for tt
coarsestgrid, where “reconstruction errors” are most evident. Quantitative error assessn
are possible for these known geometries if one defines the reconstruction error as the vo
integral of the difference between actual interface and the linear representation. With er
guantified, convergence rates can be computed, as shown in Tables 4-6. For the cir

X X

FIG. 21. Piecewise linear reconstructed interfaces based on Youngs’ second method for the interface no
non a 10x 10 grid. (a) Offset circle. (b) Offset square.
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X X

FIG. 22. Piecewise linear reconstructed interfaces based on Swartz's method for the interfacenmnonmal
10 x 10 grid. (a) Offset circle. (b) Offset square.

distribution, which has no curvature singularities, we expect each interface normal met
to converge. For the square, on the other hand, curvature singularities (the corners)
preclude convergence. Along with inhibiting convergence, curvature singularities will al
be the site of the most flagrant reconstruction errors.

The errors measured on these simple tests give rise to some interesting observat
Youngs’ second method (which is first order) surprisingly exhibited the lowest errors on
coarsest grids, but its lower convergence rate eventually led to errors that exceeded the
methods as the grid is refined. In general, for large curvatures (relative to mesh spac
Youngs’ second method is quite robust, which is in contrast to the second-order Sw
method, as discussed later.

Results for Youngs’ second method are given in Table 4 and Fig. 21. The converge
rate deteriorates as the grid is refined, approaching first-order. A qualitative assessme
the reconstruction (Fig. 21) is favorable, but the square corners present the method
more problems than the second-order Swartz or least squares methods.

X X

FIG. 23. Piecewise linear reconstructed interfaces based on the least squares method for the interface n
non a 10x 10 grid. (a) Offset circle. (b) Offset square.
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TABLE 4
L, Circle Reconstruction Error Norms Using Youngs'
Second Method for the Interface Normal n

Grid Error Order
1% 2.04x 1073
1.59
20 6.79x 10
1.38
40 2.60x 10
1.36
8Q? 1.01x 10
0.93
160 529x 10°°

Swartz’s method produces second-order results, as is evident in Table 5. Absolute er
however, are larger than those exhibited by Youngs’ second method on the coarser grids.
can be seen in the quality of the coarse-grid reconstruction shown in Fig. 22. The piece\
linear segments along the circle (Fig. 22a) are not as continuous as those generated
Youngs’ second method in Fig. 21. This coarse-grid degradation may be indicative of
problems encountered with Swartz’s method on difficult transport problems, where fl
bodies with complex topologies (high curvatures) can be created.

Finally, consider the reconstruction errors resulting from the least squares error mett
This method is also second-order, as seen in Table 6. While the absolute errors in Tal
are slightly larger than the Swartz method, the reconstruction solutions (Fig. 23) are jud
to be superior for both the circle and the square. The reconstruction is more continuou:
the circle and the singularities in the corners are more localized.

The cost of each reconstruction technique varies with the second-order accurate met
being much more expensive than the first-order methods. Youngs’ method is approxima
five times cheaper than the fast least squares minimization. In turn, the fast least squ
is slightly less than three times as cheap as the full least squares minimization or Swa
method.

TABLE 5
L, Circle Reconstruction Error Norms Using Swartz’s
Method for the Interface Normal n

Grid Error Order

1% 271x 1073

1.98
20 6.84x 10

2.40
407 1.29x 10

2.07
807 3.08x 10°°

2.22

16C° 6.63 x 10°°




RECONSTRUCTING VOLUME TRACKING 147

TABLE 6
L, Circle Reconstruction Error Norms Using the Least
Squares Method for the Interface Normal n

Grid Error Order
1% 3.21x 107
2.18
207 7.08 x 104
2.29
40 1.45x 10
1.94
8Q? 3.78 x 10°°
2.01
160 9.38x 10°°

APPENDIX B: TRANSLATION AND ROTATION TESTS

Since translational and rotational flows do not induce topology change, the volume fi
tions associated with fluid bodies entrained in these flows are known exactly. In such ce
error norms can be defined based on some positive-definite measure of the difference
served between the computed and exact valués\dfe choose to estimate computed errors
in these problems with ah; norm defined as

Ebt = DV | fiomPed fenacy, 17)
grid

The E': error defined above has units of area (or volume in 3D); therefore, its change w
mesh size can be used to infer rates of convergence.

B.1. Test Problems

For both the translation and rotation test problems, a circular fluid body is placed in a
square computational domain that is partitioned with eithér 82, or 128 orthogonal,
uniform cells. The circular body is represented with a scalar field that is unity and ze
inside and outside the circle, respectively. For those cells containing the circular interf
the scalar field is set to a value between zero and one, in proportion to the cell volt
truncated by the circle. This field represents a characteristic (or color) function, which
our purposes is the fluid volume fraction for a circular fluid body, i.e., the volume fractic
is 100% inside the circle and 0% outside. All boundaries are periodic. For these tests
use the unsplit time-integration scheme given by (11) and the least squares methoc
estimating the interface normal

Simple translation. A uniform and constant velocity field having positive, equal com
ponents is imposed everywhere in the domain. This solenoidal field will cause fluid boc
to translate diagonally across the mesh at‘aatfgle. The circular fluid body (radius 0.25),
initially centered at (0.50, 0.50), should return to its initial position after 1 time unit, allow
ing error measurement with (17). A CFL number%d[s used. The body should not change
shape as a result of this movement.
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FIG. 24. Performance of a piecewise constant tracking method in translating and rotating an initially circu
fluid body on a 32 grid. Reconstructed interfaces are shown for the body (a) after being translatedfat 45
a distance of two domain diagonals, and (b) after being rotated one revolution. (a) Translation. (b) Rota
(magnified view).

Solid body rotation. A constant-vorticity velocity field is imposed at the center of the
domain. This solenoidal field will cause all fluid bodies to rotate around this center. T
circular fluid body (radius 0.15), initially centered at (0.50, 0.75), should return to its initi
position afterr time units, allowing error measurement with (17). A CFL numbeé 0:1
used, based on the maximum velocity in the domain. The body should not change shaj
a result of this rotation.

B.2. Results

Let us first assess the ability of traditional piecewise constant volume tracking method
translate and rotate the circular body. We employ a piecewise constant method that repre
a combination of the SLIC and VOF methoti$he circle is shown after translating two
diagonals of the computational domain in Fig. 24a and after rotating one revolution
Fig. 24b. In both cases the results are inferior to the piecewise linear results depicte
Figs. 25 and 26. Computed piecewise constargrrors are one to two orders of magnitude
larger than the coarsest-grid f3diecewise linear results, with the differences becoming
even larger as the grid is refined. Convergence for this piecewise constant scheme is a
first order.

Two important features are evidentin Fig. 24 that are typical of piecewise constant volu
tracking methods. First, the circular body in Fig. 24a remains in one piece after translat
but the circle’s topology has become square-like by virtue of its interfaces aligning with t
grid coordinates. This misalignmentis the direct result of the imposed horizontal and vert
interface reconstructions associated with piecewise constant approximations. Second,
rotating the circular body one revolution in Fig. 24b, the circle has lost small bits of flu
that have been unphysically ejected from the main body. This unacceptable flotsam crez:
always accompanies a piecewise constant method when the flowfield has appreciable s
variation.

3 Like the VOF method, an interface normracomputed from a 3« 3 stencil is used to determine interface
orientation. Like the SLIC method, the interface is then reconstructed vertically or horizontally, depending uj
the relative magnitudes of thecomponents.
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TABLE 7
L, Error Norms and Convergence Rates for a Circular Fluid Body Translated Two Domain
Diagonals at Three Different Angles to the Grid

Grid Error (0) Order (0) Error (26565) Order (26565) Error (45) Order (45)

32 1.97 x 10 1.99x 103 6.21x 10
2.67 2.16 1.33
64 3.09x 10°° 4.45x 104 247 x 104
2.50 2.03 2.27
128 548 x 104 1.09x 104 5.10x 10°°
a 1 T b 0.9844
0.9
0.8
+— 07
06
[ \
> g } } = 0s —
\ ]
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0.2
0,14
0 | 0.01562 e
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FIG. 25. Performance of the piecewise linear volume tracking method in translating an initially circular flu
body at 45 for a distance of two domain diagonals on & &@id. (a) Reconstructed interfaces. (b) error
contours.
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FIG. 26. Performance of the piecewise linear volume tracking method in rotating an initially circular flui
body for one revolution on a 32yrid. (a) Reconstructed interfaces. (b)error contours.



150 RIDER AND KOTHE

TABLE 8
L, Error Norms and Convergence Rates for a Circular Fluid
Body Rotated One Revolution

Grid Error Order
32 1.61x 102
2.19
64 3.54x 10
1.98
128 8.95x 10°°

Recall that our second-order unsplit time integration is used for the piecewise cons
method that generated the results in Fig. 24, so accuracy degradation is solely due t
piecewise constant geometry approximation. This crude approximation fails to pass sin
translation tests, as shown in Fig. 24.

Our piecewise linear scheme, on the order hand, preserves the circular shape after tre
tion, as shown in Fig. 25. The reconstructed interfaces and error contours are isotropic
respect to flow, i.e. exhibiting no bias toward flow direction. Errors are slightly highefat 4
angular increments around the circle (Fig. 25b). Mass conservation is exact. Converg
rates based on (17) are generally second order, but they exhibit some dependence on th
direction (relative to the grid), as shown in Table 7. The convergence rate is clearly sec
order in most cases, with the highest errors generated by tbé&2&ranslation. These
excellent translation results should be expected from a useful interface tracking mett
Excellent translation performance is necessauy,not sufficientfor a method required to
track interfaces in complex topology flows.

Solid body rotation results add little additional insight relative to the translation resul
except that phase errors are now more apparent, as shown in Fig. 26b. Second order acc
is again exhibited, as shown in Table 8. Neither the translation or rotation problems p
serious problems for a well-designed interface tracking method. They will expose diffus
and dispersion problems typical of standard advection methods, but are not sufficient
methods designed specifically for interfaces. For both translation and rotation, the circ
shape is preserved; hence we can declare vidmryow, but more stringent tests are
necessary.
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